Возможный подход к сопоставлению сформированности исполнительных функций и активности сетей покоя ЭЭГ у подростков (на материале анализа онлайн-поисковой активности)

Авторы

  • Елена Ивановна Николаева Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0001-8363-8496
  • Евгений Геннадьевич Вергунов Научно-исследовательский Институт нейронаук и медицины https://orcid.org/0000-0002-8352-5368
  • Надежда Владимировна Сутормина Российский государственный педагогический университет им. А. И. Герцена https://orcid.org/0000-0002-5073-8922

DOI:

https://doi.org/10.33910/2686-9527-2023-5-1-138-152

Ключевые слова:

нейросети, дефолтная сеть, исполнительная сеть, исполнительные функции, подростки, поиск в интернете, айтрекер

Аннотация

Введение. Поиск информации в интернете — одна из самых актуальных когнитивных задач учащихся в настоящее время, как в школе, так и дома. Сегодня широко обсуждается вопрос о соотношении успешности выполнения когнитивных задач с активностью дефолтных сетей.

Материалы и методы. Заданием испытуемого стал поиск определенной информации в интернете, который соотносился с результатами других заданий. В них оценивались исполнительные функции (рабочая память и тормозный контроль), параметры, полученные с помощью айтрекинга при чтении инструкции, и 5-минутные записи ЭЭГ (64 канала). Структура исследования: проводилась запись ЭЭГ, затем испытуемый выполнял задания, позволяющие оценить сформированность рабочей памяти и тормозного контроля, читал инструкцию, а затем выполнял задание, направленное на поиск информации в интернете. После всех заданий снова проводилась запись ЭЭГ. В эксперименте участвовало 68 школьников в возрасте 8–16 лет. Для изучения электрической активности мозга был использован электроэнцефалограф BE Plus PRO (64 каналов, частота дискретизации 1000 Гц). Для изучения параметров окулографии использовался айтрекер Gazepoint GP3 HD.

Результаты. Результатом многомерного анализа стала бикомпонентная (Two-Block PLS) модель, включающая переменные, представляющие собой ряды инструментальных данных (46 переменных и ряды признаков). Соответственно, было получено 46 латентных структур. В статье анализируются связи двух латентных структур. Было показано, что полученная модель может отражать работу исполнительной сети и дефолтной сети. Активность этих сетей соответствовала как изменениям показателей, оцененных с помощью айтрекера, так и параметрам рабочей памяти и тормозного контроля. Показано, что выраженные изменения параметров рабочей памяти связаны с выполнением задачи и активностью исполнительной сети в состоянии покоя. Отсутствие связи параметров исполнительных функций с выполнением задания поиска информации в интернете были связаны только с активацией дефолтной сети в состоянии оперативного покоя.

Заключение. Была разработана модель соотношения сетей по умолчанию с уровнем сформированности исполнительных функций, позволяющая описать степень успешности поиска подростком информации в интернете.

Библиографические ссылки

ЛИТЕРАТУРА

Величковский, Б. М., Князев, Г. Г. Валуева, Е. А., Ушаков, Д. В. (2019) Новые подходы в исследованиях творческого мышления: от феноменологии инсайта к объективным методам и нейросетевым моделям. Вопросы психологии, № 3, с. 3–16.

Вулф, М. (2021) Читающий мозг в цифровом мире. М.: АСТ, 256 с.

Килби, Э. (2019) Гаджетомания: как не потерять ребенка в виртуальном мире. СПб.: Питер, 256 с.

Князев, Г. Г., Бочаров, А. В., Савостьянов, А. Н., Величковский, Б. М. (2020) Эффект инкубации и активность сетей покоя. Журнал высшей нервной деятельности им. И. П. Павлова, т. 70, № 5, с. 601–608. https://doi.org/10.31857/S0044467720050068

Кривощеков, С. Г., Николаева, Е. И., Вергунов, Е. Г., Приходько, А. Ю. (2022) Многомерный анализ показателей тормозного и автономного контроля при ортостазе и в эмоциональных ситуациях. Физиология человека, т. 48, № 1, с. 26–37. https://doi.org/10.31857/S0131164621060059

Микляева, А. В., Николаева, Е. И., Сутормина, Н. В., Панферов, В. Н. (2022) Психофизиологические и психологические особенности подростков, связанные с эффективным онлайн-поиском учебной информации. Теоретическая и экспериментальная психология, т. 15, № 4, с. 60–76.

Николаева, Е. И. (2021) Функциональные роли нейронных сетей в раннем детском возрасте. Вопросы психологии, т. 67, № 5, с. 15–29.

Николаева, Е. И., Вергунов, Е. Г. (2017) Что такое «executive functions» и их развитие в онтогенезе. Теоретическая и экспериментальная психология, т. 10, № 2, с. 62–81.

Николаева, Е. И., Вергунов, Е. Г. (2021) Оценка связи асимметрии лицевой экспрессии с тормозным контролем и латеральными предпочтениями у физически активных мужчин. Асимметрия, т. 15, № 4, с. 38–53. https://doi.org/10.25692/ASY.2021.15.4.004

Николаева, Е. И., Сутомина, Н. В. (2022) Методологические подходы к использованию психофизиологических параметров для оценки эффективности поиска информации подростками в интернете. Вестник психофизиологии, № 2, с. 97–105. https://doi.org/10.34985/v3578-1549-1121-l

Пирадов, М. А., Супонева, Н. А., Селиверстов, Ю. А. и др. (2016) Возможности современных методов нейровизуализации в изучении спонтанной активности головного мозга в состоянии покоя. Неврологический журнал, т. 21, № 1, с. 4–12.

Разумникова, О. М., Николаева, Е. И. (2019a) Тормозные функции мозга и возрастные особенности организации когнитивной деятельности. Успехи физиологических наук, т. 50, № 1, с. 75–89. https://doi.org/10.1134/S0301179819010090

Разумникова, О. М., Николаева, Е. И. (2019b) Возрастные особенности тормозного контроля и проактивная интерференция при запоминании зрительной информации. Вопросы психологии, № 2, с. 124–132.

Разумникова, О. М., Николаева, Е. И. (2021) Онтогенез тормозного контроля когнитивных функций и поведения. Новосибирск: Новосибирский государственный технический университет, 158 с.

Твенге, Д. (2021) Поколение айфона: кто они? М.: Рипол-Классик, 408 с.

Улс, Я. Т. (2019) Добавьте в друзья своих детей. Путеводитель по воспитанию в цифровую эпоху. М.: Эксмо, 240 с.

Хансен, А. (2021) На цифровой игле. М.: Рипол-Классик, 240 с.

Bezgodova, S., Miklyaeva, A., Nikolaeva, E. (2020) Computer vs smartphone: How do pupils complete educational tasks that involve searching for information on the internet? In: CEUR Workshop Proceedings. 15. “NESinMIS 2020—Proceedings of the 15th International Conference “New Educational Strategies in Modern Information Space””. [S. l.]: [s. n.], pp. 52–62.

Biswal, B. B., Van Kylen, J., Hyde, J. S. (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, vol. 10, no. 4-5, pp. 165–170. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7

Buckner, R. L., Andrews-Hanna, J. R., Schacter, D. L. (2008) The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, vol. 1124, no. 1, pp. 1–38. https://doi.org/10.1196/annals.1440.011

Conklin, K., Pellicer-Sáchez, A., Carrol, G. (2018) Eye-tracking: A guide for applied linguistics research. New York: Cambridge University Press, 244 p. https://doi.org/10.1017/9781108233279

Culpepper, L. (2015) Neuroanatomy and physiology of cognition. The Journal of Clinical Psychiatry, vol. 76, no. 7, article e900. https://doi.org/10.4088/JCP.13086tx3c

Delorme, A., Makeig, S. (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Method, vol. 134, no. 1, pp. 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Di, X., Gohel, S., Kim, E. H., Biswal, B. B. (2013) Task vs. rest—different network configurations between the coactivation and the resting-state brain networks. Frontiers in Human Neuroscience, vol. 7, article 493. https://doi.org/10.3389/fnhum.2013.00493

Diamond, A. (2013) Executive functions. Annual Review of Psychology, vol. 64, pp. 135–168. https://doi.org/10.1146/annurev-psych-113011-143750

Kovaleva, V. Yu., Pozdnyakov, A. A., Litvinov, Yu. N., Efimov, V. M. (2019) Estimation of the congruence between morphogenetic and molecular-genetic modules of gray voles Microtus S.L. variability along a climatic gradient. Ecological Genetics, vol. 17, no. 2, pp. 21–34. https://doi.org/10.17816/ecogen17221-34

Polunin, D., Shtaiger, I., Efimov, V. (2019) JACOBI4 software for multivariate analysis of biological data. BioRxiv. [Online]. Available at: https://doi.org/10.1101/803684 (accessed 14.10.2022).

Raichle, M. E. (2015) The brain’s default mode network. Annual Review of Neuroscience, vol. 38, pp. 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030

Rännar, S., Lindgren, F., Geladi, P., Wold, S. (1994) A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics, vol. 8, no. 2, pp. 111–125. https://doi.org/10.1002/cem.1180080204

Rohlf, F. J., Corti, M. (2000) Use of two-block partial least-squares to study covariation in shape. Systematic Biology, vol. 49, no. 4, pp. 740–753. https://doi.org/10.1080/106351500750049806

Seeley, W. W., Menon, V., Schatzberg, A. F. et al. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007

REFERENCES

Bezgodova, S., Miklyaeva, A., Nikolaeva, E. (2020) Computer vs smartphone: How do pupils complete educational tasks that involve searching for information on the internet? In: CEUR Workshop Proceedings. 15. “NESinMIS 2020—Proceedings of the 15th International Conference “New Educational Strategies in Modern Information Space””. [S. l.]: [s. n.], pp. 52–62. (In English)

Biswal, B. B., Van Kylen, J., Hyde, J. S. (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, vol. 10, no. 4-5, pp. 165–170. https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 (In English)

Buckner, R. L., Andrews-Hanna, J. R., Schacter, D. L. (2008) The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, vol. 1124, no. 1, pp. 1–38. https://doi.org/10.1196/annals.1440.011 (In English)

Conklin, K., Pellicer-Sáchez, A., Carrol, G. (2018) Eye-tracking: A guide for applied linguistics research. New York: Cambridge University Press, 244 p. https://doi.org/10.1017/9781108233279 (In English)

Culpepper, L. (2015) Neuroanatomy and physiology of cognition. The Journal of Clinical Psychiatry, vol. 76, no. 7, article e900. https://doi.org/10.4088/JCP.13086tx3c (In English)

Delorme, A., Makeig, S. (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Method, vol. 134, no. 1, pp. 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 (In English)

Di, X., Gohel, S., Kim, E. H., Biswal, B. B. (2013) Task vs. rest—different network configurations between the coactivation and the resting-state brain networks. Frontiers in Human Neuroscience, vol. 7, article 493. https://doi.org/10.3389/fnhum.2013.00493 (In English)

Diamond, A. (2013) Executive functions. Annual Review of Psychology, vol. 64, pp. 135–168. https://doi.org/10.1146/annurev-psych-113011-143750 (In English)

Hansen, A. (2021) Na tsifrovoj igle [On a digital needle]. Moscow: Ripol Classic Publ., 240 p. (In Russian)

Knyazev, G. G., Bocharov, A. V., Savost’yanov, A. N., Velichkovskij, B. M. (2020) Effekt inkubatsii i aktivnost’ setej pokoya [Effect of incubation and resting state networks]. Zhurnal vysshej nervnoj deyatel’nosti im. I. P. Pavlova — I. P. Pavlov Journal of Higher Nervous Activity, vol. 70, no. 5, pp. 601–608. https://doi.org/10.31857/S0044467720050068 (In Russian)

Kilbey, E. (2019) Gadzhetomaniya: kak ne poteryat’ rebenka v vrirtual’nom mire [Gadget mania: How to not lose a child in the virtual world]. Saint Petersburg: Piter Publ., 256 p. (In Russian)

Kovaleva, V. Yu., Pozdnyakov, A. A., Litvinov, Yu. N., Efimov, V. M. (2019) Estimation of the congruence between morphogenetic and molecular-genetic modules of gray voles Microtus S.L. variability along a climatic gradient. Ecological Genetics, vol. 17, no. 2, pp. 21–34. https://doi.org/10.17816/ecogen17221-34 (In English)

Krivoshchyokov, S. G., Nikolaeva, E. I., Vergunov, E. G., Prikhodko, A. Yu. (2022) Mnogomernyj analiz pokazatelej tormoznogo i avtonomnogo kontrolya pri ortostaze i v emotsional’nykh situatsiyakh [Multivariate analysis of indicators of inhibitory and autonomic control in orthostasis and in emotional situations]. Fiziologiya cheloveka, vol. 48, no. 1, pp. 26–37. https://doi.org/10.31857/S0131164621060059 (In Russian)

Miklyaeva, A. V., Nikolaeva, E. I., Sutormina, N. V., Panferov, V. N. (2022) Psikhofiziologicheskie i psikhologicheskie osobennosti podrostkov, svyazannye s effektivnym onlajn-poiskom uchebnoj informatsii [Psychophysiological and psychological characteristics of adolescents associated with effective online search for educational information]. Teoreticheskaya i eksperimental’naya psikhologiya — Theoretical and Experimental Psychology, vol. 15, no. 4, pp. 60–76. (In Russian)

Nikolaeva, E. I. (2021) Funktsional’nye roli nejronnykh setej v rannem detskom vozraste [Functional role of neural networks in early children]. Voprosy psikhologii, vol. 67, no. 5, pp. 15–29. (In Russian)

Nikolaeva, E. I., Sutomina, N. V. (2022) Metodologicheskie podkhody k ispol’zovaniyu psikhofiziologicheskikh parametrov dlya otsenki effektivnosti poiska informatsii podrostkami v internete [Methodological approaches to the use of psycho-physiological parameters to assess the effectiveness of information search by teenagers on the Internet]. Vestnik psikhofiziologii — Psychophysiology News, no. 2, pp. 97–105. https://doi.org/10.34985/v3578-1549-1121-l (In Russian)

Nikolaeva, E. I., Vergunov, E. G. (2017) Chto takoe “executive functions” i ikh razvitie v ontogeneze [Executive functions and their development in ontogenesis]. Teoreticheskaya i eksperimental’naya psikhologiya — Theoretical and Experimental Psychology, vol. 10, no. 2, pp. 62–81. (In Russian)

Nikolaeva, E. I., Vergunov, E. G. (2021) Otsenka svyazi asimmetrii litsevoj ekspressii s tormoznym kontrolem i lateral’nymi predpochteniyami u fizicheski aktivnykh muzhchin [Estimation of the relationship of facial expression asymmetry with inhibitory control and lateral preferences in physically active men]. Asimmetriya — Journal of Asummetry, vol. 15, no. 4, pp. 38–53. https://doi.org/10.25692/ASY.2021.15.4.004 (In Russian)

Piradov, M. A., Suponeva, N. A., Seliverstov, Yu. A. et al. (2016) Vozmozhnosti sovremennykh metodov nejrovizualizatsii v izuchenii spontannoj aktivnosti golovnogo mozga v sostoyanii pokoya [The opportunities of modern imaging methods in the study of spontaneous brain activity in state]. Nevrologicheskij zhurnal — Neurological Journal, vol. 21, no. 1, pp. 4–12. (In Russian)

Polunin, D., Shtaiger, I., Efimov, V. (2019) JACOBI4 software for multivariate analysis of biological data. BioRxiv. [Online]. Available at: https://doi.org/10.1101/803684 (accessed 14.10.2022). (In English)

Raichle, M. E. (2015) The brain’s default mode network. Annual Review of Neuroscience, vol. 38, pp. 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030 (In English)

Rännar, S., Lindgren, F., Geladi, P., Wold, S. (1994) A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. Journal of Chemometrics, vol. 8, no. 2, pp. 111–125. https://doi.org/10.1002/cem.1180080204 (In English)

Razumnikova, O. M., Nikolaeva, E. I. (2019a) Tormoznye funktsii mozga i vozrastnye osobennosti organizatsii kognitivnoj deyatel’nosti [Inhibitory brain functions and age-associated specificities in organization of cognitive activity]. Uspekhi fiziologicheskikh nauk, vol. 50, no. 1, pp. 75–89. https://doi.org/10.1134/S0301179819010090 (In Russian)

Razumnikova, O. M., Nikolaeva, E. I. (2019b) Vozrastnye osobennosti tormoznogo kontrolya i proaktivnaya interferentsiya pri zapominanii zritel’noj informatsii [Age characteristics of inhibition control in the model of proactive interference]. Voprosy psikhologii, vol. 2, pp. 124–132. (In Russian)

Razumnikova, O. M., Nikolaeva, E. I. (2021) Ontogenez tormoznogo kontrolya kognitivnykh funktsij i povedeniya [Ontogeny of inhibitory control of cognitive functions and behavior]. Novosibirsk: Novosibirsk State Technical University Publ., 158 p. (In Russian)

Rohlf, F. J., Corti, M. (2000) Use of two-block partial least-squares to study covariation in shape. Systematic Biology, vol. 49, no. 4, pp. 740–753. https://doi.org/10.1080/106351500750049806 (In English)

Seeley, W. W., Menon, V., Schatzberg, A. F. et al. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007 (In English)

Twenge, J. (2021) Pokolenie ajfona: kto oni? [iGen: Why today’s super-connected kids are growing up less rebellious, more tolerant, less happy and completely unprepared for adulthood]. Moscow: Ripol Classic Publ., 408 p. (In Russian)

Uhls, Ya. T. (2019) Dobav’te v druz’ya svoikh detej. Putevoditel’ po vospitaniyu v tsifrovuyu epokhu [Media moms and digital dads, a fact not fear approach to parenting in the digital age]. Moscow: Eksmo Publ., 240 p. (In Russian)

Velichkovskij, B. M., Knyazev, G. G. Valueva, E. A., Ushakov, D. V. (2019) Novye podkhody v issledovaniyakh tvorcheskogo myshleniya: ot fenomenologii insajta k ob’ektivnym metodam i nejrosetevym modelyam [New approaches in creative thinking research: From insight phenomenology to objective methods and neural network models]. Voprosy psikhologii, no. 3, pp. 3–16. (In Russian)

Wolf, M. (2021) Chitayushchij mozg v tsifrovom mire [Reader, come home: The reading brain in a digital world]. Moscow: AST Publ., 256 p. (In Russian)

Загрузки

Опубликован

14.04.2023

Выпуск

Раздел

Статьи